Evolving A Legacy System:
Restructuring The Mendelian Inheritance in Man Database

Peter Li, Ph.D., Laurie Kramer, Stuart Pineo, and David Kulp
Genome Database, Johns Hopkins University, Baltimore, MD

Mendelian Inheritance i n (MIM) is an encyclo-
pedia of medical genetics that has been in electronic
form for over 30 years. In its lifetime, MIM has under-
gone many organizational and software changes. In
1994, a major transition was made based on three
basic principles: industry standards, open systems
architecture, and extensibility. The resulting MIM
database allows users to navigate to other genomic
databases, permits the delivery of multimedia infor-
mation, and improves the quality of data. The new
MIM database also improved its administration
because of 1) an internal format that enforces consis-
tency; 2) a lower maintenance cost of software; and 3)
a better ability to migrate MIM content. In addition,
the new architecture will allow MIM easily to adopt
emergent technologies as they mature.

INTRODUCTION

MIM is a comprehensive collection of literature
reviews for the field of medical genetics [1]. It is
authored by Dr. Victor A. McKusick at the Johns Hop-
kins University, School of Medicine and has been
maintained in electronic format since 1963. Initially,
entries recorded in the MIM database were mendeliz-
ing traits (phenotypes) reported in the literature. How-
ever, as the science of genetics evolved, entries about
genes were also added to the database. Consequently,
MIM began to evolve as a “gene catalog.” Currently,
there are 6,600 entries. Each entry is assigned a 6-digit
number for identification. The total text size is 27
megabytes, 40 percent of which are 52,000 references.

The MIM editorial system, i.e., the repository that
supports the editing and distribution of MIM entries,
had not been updated for the last 10 years. It only sup-
ported three specific UNIX accounts for editing and
the data were made available to users through only
two media. The first medium is the printed book form,
published once every 2 years since 1963. The second
medium is the terminal-based online version of MIM
(OMIM), using the “Information Retrieval eXperi-
mental Workbench” (IRX) programs developed in
collaboration with the National Library of Medicine in
1985 [2].

When compared to other genomic databases [3],
many of which are less than 10 years old, the MIM
repository was based on outdated principles and tech-
nologies. It was a classic example of a legacy system
developed without applicable standards, constrained
to a centralized machine, and based on proprietary

0195-4210/94/$5.00 © 1994 AMIA, Inc. 344

code that could not be migrated easily [4]. Conse-
quently, it was increasingly difficult to connect MIM
information with other genomic databases and to pro-
vide MIM information through user-friendly means.

In order to maintain MIM’s usefulness, it had to
evolve to new standards and to meet new expecta-
tions. For example, the technology for accessing
information through CDROM and Internet have
matured and users want to be able to navigate to and
from other genomic databases. However, the charac-
teristics of the legacy system makes this evolution
very difficult. Different strategies were considered,
ranging from encapsulating the MIM system with a
shell to migrating the data and software onto new
architectures. We chose the latter approach because
the encapsulation approach would not sufficiently
resolve the limitations of the system.

MIM required a different approach for migration
than the traditional databases of the business world
because it is a text-oriented database. Text databases
are under intense research from the information
retrieval community [5][6], in part because of the dif-
ficulty of prescribing a single structure for the many
unrelated flat files, e.g., as found in news and print
archives. However, a subset of these wide-spectrum
text databases is characterized by files that come from
a single source or relate to a single topic, e.g., biblio-
graphic databases. For these databases, it is easier to
determine a single structure (schema) to which all
contents can be converted. Once in this structured for-
mat, one can maintain consistency and integrity of the
entries through database techniques.

MIM is an ideal candidate to evolve to a structured
form because it is a collection of text files that comes
from a single source and relates to a single topic.
There are many approaches to defining structure for
documents. One approach is based on the presentation
format, such as titles, headers, and paragraphs.
Another approach is based on large-scale semantic
constructs, such as sections of text and the reference
list. The restructuring of MIM took a third approach
based on small-scale constructs. For example, instead
of one structure for a whole reference list or a single
reference, we broke down the references into compo-
nents: authors, titles, journals, etc..

This paper describes the challenges and solutions

encountered while making this evolutionary transition
for the MIM database.

PROBLEMS AND GOALS

The previous major revision of MIM software
resulted in the UNIX file system as the file repository
and UNIX text editing as the main method for updat-
ing the entries. The problems of this system can be
described from three perspectives: structure, mainte-
nance, and access.

The structural problem relates to the fact that MIM
entries were essentially flat text files and the software
did not perform automatic structural validation. All
errors (typographical and semantic) were only
detected by proofreading. However, many errors were
not found and accumulated until book publication. At
this time, errors were discovered and corrected as the
book production programs broke down while process-
ing files with errors or when the pre-book comprehen-
sive proofreading was done. While the flat files gave
the most freedom to the writers in layout and presenta-
tion, they created a context where the information is
organized only for textual editing and presentation. To
provide automated validation, our solution was to use
fine grain structure, so that structured contents could
be verified against each other without natural lan-
guage parsing. A goal for the new MIM system was to
define the structure and then to enforce it. Further-
more, as the structure of MIM evolves with time, the
enforcing mechanism must be simple to adapt and the
conversion of existing entries to new schema must be
simple to perform.

The MIM database maintenance problem is a result
of its legacy nature. The software is dependent on spe-
cific UNIX directories, files, and accounts. For exam-
ple, the checkin and checkout programs that
transferred the files in and out of the repository were
processing files in the home directories of specific
UNIX users. As changes were made in the operating
system and in staff personnel, increasingly compli-
cated modifications to the software were required. In
addition, all programs that access MIM information
were developed in an adhoc fashion, with very little
reuse of existing software, nor was the code written in
a format that facilitated reuse. For example, the pro-
grams for the book typesetter cannot be used for gen-
erating the files for the IRX system. The previous
MIM software was based on 4,000 lines of UNIX sh
code, 2,000 lines of UNIX lex code, and 4,000 lines of
C code. A second goal for the new system was to
improve reuse, capacity, and capability without sacri-
ficing adaptability. In addition, a framework of exten-
sibility should be at the core of the system so that the
MIM database can migrate to other architectures with
ease.

Last, the delivery of MIM information to users was
limited to the book form, the IRX-based OMIM, and

345

the IRX-derived flat files for Internet access. It lacked
the navigational features needed to interoperate with
the many new genomic databases that have been
recently deployed. In the recent years, the technolo-
gies for novel methods of accessing information over
the Internet have matured: Wide Area Information
Servers (WAIS), gopher, and World-Wide-Web
(WWW) [7]. In addition, CDROM (multimedia) envi-
ronments have also gained wide acceptance. MIM
users were expecting to receive MIM information
through these new methods. Therefore, our third and
final goal was to ensure that the new MIM structure
and software were designed to simplify the transport-
ing of MIM information to new environments and to
facilitate new ways of accessing MIM information.

A major underlying concern for all these goals was
that the new MIM repository had to be of production
quality and not a research system. Therefore, it had to
be robust enough for heavy concurrent usage and pro-
vide sufficient throughput for on-demand access and
editing sessions. In addition, three overriding princi-
ples were used when developing this new system:
industry standards, open system architecture, and
extensibility.

APPROACHES

We addressed the structural problem of MIM by
tagging the elements in a MIM entry and then ensur-
ing that the content of each tag was appropriate for the
tag and the tags were in the correct order. The ISO
8879 standard, Standard Generalized Markup Lan-
guage (SGML) [8], was used for such tagging or mark
up of MIM documents. SGML provided a method of
specification (Document Type Definition, DTD) that
defines the structure of the document in terms of the
tags and defines whether documents that have been
tagged conform to a particular DTD. Because SGML
is an international standard, many commercial and
public domain software support the processing of
SGML DTD’s and tagged documents.

The software problem of MIM was best solved by
using an open architecture, i.e., nonproprietary sys-
tems with standard application interfaces. This type of
architecture allows vendor independence and future
evolution. Unlike SQL, there are no standards widely
accepted for text retrieval. In addition, we could not
find a SGML-based textual database management
system (DBMS) that was within our budget con-
straints. Consequently, we opted for in-house devel-
opment, but made sure that it would be easy to
migrate when an appropriate candidate DBMS is
found. The software engineering tools and environ-
ment used for the Genome DataBase (GDB) [9] were
adopted for MIM. These tools provided automatic set

up, versioning, and common access for groups of
users.

The solution for accessing MIM information in dif-
ferent distribution media was based on a set of filter-
ing programs that convert the SGML-based MIM files
to the appropriate format required for that particular
medium. For example, if the typesetter can directly
process SGML, then no conversion is needed. In fact,
the eleventh edition of the MIM book was directly
printed from SGML. The other formats (IRX, word-
processing, and WWW) were given their own inde-
pendent programs. This approach ensured the extensi-
bility of the system for future methods of access.

Although the database implementation was done in-
house, the problem of editing MIM files remained.
SGML has a set of rich, i.e., “complex,” features to
minimize the intrusion of “tags” in the flow of the
document, thereby allowing rapid keying of SGML
tagged content using text editors and minimizing stor-
age space. Plain text editors are not acceptable as edit-
ing tools because MIM staff writers are not experts in
SGML rules. Therefore, we needed a tool with auto-
matic enforcement of tags and their order. As a result,
for the staff writers, we used a commercial SGML
editing package that actively enforces the DTD-driven
structure and provides a graphical user interface simi-
lar to the popular word processors used in the PC
domain.

RESULTS
SGML Encoding for MIM

SGML does not convey any semantic information
associated with the tags. It is up to the application
domain or program to determine the meaning of the
tags, i.e., whether it encodes semantic or formatting
information. Since we chose to specify the MIM
structure in terms of the semantic content, the tags
relate to the meaning of the enclosed content. For
example, a reference in MIM: “Fitzsimmons, J. S.:
Familial recurrence of achondroplasia. Am. J. Med.
Genet. 22: 609-613, 1985.” can be tagged as:

<REF REFNO="13">
<AUTHOR>Fitzsimmons, J. S.</AUTHOR>

<TITLE>Familial recurrence of achondroplasia
</TITLE>

<JOURNAL>Am. J. Med. Genet.</JOURNAL>
<VOLUME>22</VOLUME>
<PAGE>6(09-613<PAGE>
<DATE>1985</DATE>

</REF>

The start and end tags are “<label>" and “</label>”,
respectively, and they enclose a specific construct
denoted by “label.” This approach for defining the
DTD for MIM ensures independence from distribu-
tion media because all formatting, including rear-
rangement, is performed as an independent step. It

346

also offers the best approach for migration to tradi-
tional databases. Since direct editing is through a
commercial SGML-based editor, writers never have
to manually enter the tags as text string, so the mini-
mization features of the SGML tags were not used.
This, in turn, simplified the code for the parse engine
because the start and end tags of all SGML constructs
were always matched.

The choice of using SGML to specify structure also
facilitated the evolution of MIM entries. Since the
conversion in January 1994, the schema for the refer-
ences has been changed three times to reflect more
accurately the actual information content. Each time,
the DTD modifications were carried out with minimal
effort and the supporting software was updated with
similar ease.

Validation of MIM Entries

Although SGML encodes the parts of MIM entries,
it is unable to validate the semantic correctness of the
contents. On the other hand, semantic validation is an
open-ended problem that requires natural language
processing in a narrative text file. A compromise was
made: citations in the text that point to references in
the reference list are checked for correct matching.
For example, “...reported by Fitzsimmons (1985)...”
can be tagged as: “...reported by <CIT REFNO=*13">
Fitzsimmons (1985)</CIT>...,” but only if there exists
exactly one reference whose sole author is “Fitzsim-
mons” and the date of publication was 1985. When an
exact match is found, the REFNO attribute of CIT
will be assigned the REFNO attribute of the corre-
sponding REF. This feature provided a bonus for the
WWW users, because the citations are then presented
as hypertext links to the references.

Most citations in MIM text follow a uniform con-
vention, thus they can be automatically detected and
matched against the references. However, after further
analysis, the convention has four possible outcomes:
(1) valid citation that uniquely points to a reference,
(2) ambiguous citation that points to more than one
reference, (3) problem citation that points to a missing
reference, and (4) possible citation that may point to a
reference. The semantic validation program will find
all cases and properly tag them for correction.
Repairing Errors

The conversion to SGML was performed for the
MIM database on January 1, 1994. Afterward, all
editing activity occurred under the SGML-based edi-
tor. Therefore, all potential problems in the text files
had to be identified and marked for later correction.
The heuristic used was very sensitive and, to our
knowledge, did not miss any problems, but the trade-
off was a high false-positive rate. Out of 6,500 MIM
entries and 50,000 references prior to conversion,

only 3,500 entries and 35,000 references were con-
verted without any identifiable problems. Excluding
semantic problems, e.g., uncited and ambiguous cita-
tions, approximately 1,500 entries with 3,000 refer-
ences were tagged as having potential structural
problems. Out of these, only 500 entries with 1,000
references had real syntactic problems that required
editing, e.g., a missing separator between author list
and title in the original flat file which resulted in a
“error” tag. The other 1,000 entries with 2,000 refer-
ences were false-positives due to the sensitivity of our
heuristics, e.g., the presence of a title delimiter inside
the title because the original title contains it. Despite
the high false-positive rate, the correction phase took
an acceptable three person-months to perform. Over-
all, MIM had problems in 10 percent of the entries,
but in terms of references, only 2 percent. This reflects
the excellent proofreading skills of the MIM staff.

After the conversion to SGML and the correction of
structural problems, we looked for semantic problems
by examining the component fields of MIM. This was
very useful for identifying inconsistent usage of a par-
ticular field. For example, all text tagged with JOUR-
NAL was extracted, sorted, and printed for review.
Initially, there were 1,800 distinct journal spellings, of
which 120 were obvious variants, such as abbreviated
vs. nonabbreviated names. However, about 100 vari-
ant spellings cannot be easily resolved and these will
require a library literature search to correct.

These syntactic and semantic variants did not pose a
problem in the flat-file version of MIM because the
user, through natural language, can almost always
determine the actual name of the journal or separate
the authors from the title. However, these variants
have to be corrected prior to cross-linking these refer-
ences to references in the Medline database.

UNIX File System Repository

Since a suitable SGML-based DBMS couldn’t be
found, we had to develop a robust, in-house text data-
base. The existing repository was based on the UNIX
file system and the only problems were related to the
software that managed this repository, as described
above. Therefore, we adopted this architecture and
merged it with the software engineering environment,
but completely rewrote the software.

The previous system only dealt with three writers
and, therefore, did not need robust concurrency con-
trol. In contrast, the number of active writers could
now reach ten or more and robustness became critical.
We used the UNIX atomic command “mkdir” [10] as
a concurrency control semaphore to enter critical code
sections that directly manipulate database files. For
example, to lock a MIM entry for update or retrieval,
the command “mkdir SLOCK/$sig” is executed,

347

where “SLOCK” is a global lock directory, and “$sig”
is a signature for a database resource, in this case, the
MIM number. Only the first “mkdir” command will
succeed in creating the signature directory. All other
“mkdir” with the same signature will fail and have to
wait (or abort) until the first user has completed the
transaction and released the lock by executing “rmdir
$LOCK/$sig”. This had the additional benefit of cre-
ating a directory for temporary files and simplifying
rollback of modifications.

Revision Control System (RCS) [11] was used as
the method for maintaining file history, but its locking
method was not used as write locks for the writers.
The reason was that 6,500+ entries cannot be effec-
tively maintained in one UNIX RCS directory. Thus,
three levels of directories, each covering two digits in
the 6-digit MIM number, were used. For example, the
file for MIM entry 214355 is located in the directory
$MIM/db/210000/214300/214355, along with all the
status files relating to 214355, The variable “$SMIM”
specifies the root directory of the MIM database. All
editing is performed in a separate directory, MIM/
edit, and the software manage the transfer of files
between the two.

Instead of the traditional database transaction con-
trol mechanism, we retained the RCS approach of
checkout/checkin. This was managed by UNIX shell
scripts. Since its inception, the system has handled
peak loads of 350 updates per work day, with 50
entries checked out at any one time, without prob-
lems. This peak activity is about 10 times higher than
normal, based on statistics gathered over the last 2
years; it occurred during the time immediately post-
conversion, when a major effort was made to correct
erTors.

The validation and processing of MIM files were
performed by PERL scripts [12]. A total of 3,000
lines of UNIX sh code and 7,000 lines of PERL code
comprise the new system software. Although the code
size did not decrease from the previous system, the
functionality had increased dramatically. Instead of
spreading the code across sh, lex, and C, the new code
relies only on sh and PERL. The objective is to sim-
plify long-term software maintenance because exper-
tise in fewer and higher-level languages is needed.
Converting SGML to Different Media

In order to ensure that the contents of an entry are
tagged according to their semantic nature, we elimi-
nated any text alignment formatting by removing all
line breaks and extra spaces in the file prior to pro-
cessing. Consequently, in order to distribute the MIM
files to a particular medium, a filter program had to be
built according to the requirements of the medium and
generated the necessary formatting codes. The benefit

from this strategy is that MIM files can be generated
for any media without additional editing because it
only has semantic SGML constructs. Another benefit
is that formatting can be adjusted by the software and
all media-specific MIM files can be made to reflect the
new format almost immediately.

As it turns out, the increase in code required by the
individual filter programs is minimal. For example,
the filter programs for IRX, WWW, and word process-
ing share large portions of code. The resulting design
used a 400-line PERL core engine to parse the SGML-
encoded text and another 500 lines specific to each fil-
ter program. Out of the 500 lines, however, only 200
have to be written de novo with the remainder copied
from a basic template with minor modifications.
Using the core facility, the filter program for WWW
was completed within one week after the initial
request.

DISCUSSION

This newly evolved MIM database was planned,
developed, and executed based on the principles of
industry standards, open systems, and extensibility. It
took two person-years of software development time
for the conversion to SGML-based structured text and
the completely rewritten system software. Afterward,
it took three person-months of corrections to resolve
the remaining structural problems. The end result of
this transition provided new features for navigating to
external databases, allowed multimedia information,
and improved the consistency of data. The advances
for the support staff maintaining the MIM database
include structured editing, simplified code mainte-
nance, and better migration capability. We believe our
approach of fine grain structuring with SGML and
conversion to an open, extensible system has applica-
tion for other flat-file, text-oriented databases. The
principles used for MIM can also be used for porting
other legacy systems.

The work reported here, the conversion to struc-
tured documents and the consolidation of software, is
only one step among many that the MIM system will
undertake. There are several projects under develop-
ment. The first is the migration toward a relational
administrative database, which will provide open
architecture and standard. The second project is the
compilation and cross-linking of references into a
citation database to provide access to Medline
abstracts. A third project is the search for an appropri-
ate SGML-based text DBMS and retrieval engine that
can make full use of the SGML structure.

Mendelian Inheritance in Man is one of the oldest
active databases in the medical field. Its users range
from researchers to clinicians and, now through the
Internet, the general public. Part of its longevity is the

348

result of providing the expected services to its users.
As long as it continues to evolve and meet these chal-
lenges, MIM will remain valuable to scientists and the
public. We hope that this most recent evolution of
MIM will take it to the 21st century as a flagship data-
base in the field of medicine and genetics.
REFERENCES
1. McKusick, V. A.: Mendelian Inheritance in Man.
10th Edition. Johns Hopkins Press: Baltimore.
1992.

2. Harman, D., Benson, D., Fitzpatrick, L., Huntz-
lnger R., Goldstein, C.: mx..mxlntoxmu.qn_

V. for
Applications. Proc. RIAO 88 Conf., 840-848, 1988.

3. Lawton, J., Burks, C., Martinez, F.: Qverview of

the LiMB database. Nucleic Acids Research.
17:5885-5899, 1989.

4. Nassif, R Mitchusson, D.:Issues and approaches

igr. itatio
systems. Proc. ACM 93 SIGMOD. 471-474, 1993.

5. Leoffen, A.: Text Databases: A Survey of Text

Models and Systems. ACM Sigmod Record 23(1):
97-106, 1994.

6. Salton, G., Allan, J., Buckley, C.: Automatic Struc-
turing and Retrieval of Large Text Files. Communi-
cations of ACM. 37(2): 97-108, 1994.

7. Obraczka, K., Danzig, P. B., Li, S.-H.: Internet

Resource Discovery Services. IEEE Computer.
26(9): 8-22, 1993.

8. Goldfarb, C. F.: The SGML Handbook. Oxford
University Press: New York. 1992.

9.Li, P, Emmel, T. C., Campbell, J.: Virtual Develop-
ment Environment-A database software engineer-
ing system based on UNIX tools. (in preparation).

10. Leffler, S. J., McKusick, M. K., Karels, M. J.,
Quarterman, J. S.: The Design and Implementation

of the 4.3BSD UNIX Operating System. Addison-
Wesley: Reading. 1989.

11. Tichy, W. F.: RCS-A system for Version Control.
IEEE Software Practice and Experience. 15(7):
637-654, 1985.

12. Wall, L., Schwartz, R. L.: Programming perl.

O’Reilly & Assoc.: Sebastopol. 1991.

ACKNOWLEDGEMENTS

The authors wish to thank Drs. V. A. McKusick, P.
L. Pearson, K. Fasman, and Mr. C. Brunn for their
support on this project. In addition, the system was
refined with the advice and help of the MIM staff of
C. Bocchini, P. Foster, and T. Hentges. Finally, many
thanks to P. Foster for her editorial assistance. The
work was funded by NIH 5P141HG00586-03 and
DOE DE-FC02-91ER61230.

